
13.3 Measurements on Curves in 3D 
Goal: distance/arc length,  
unit tangent, unit normal, curvature. 
Distance Traveled on a Curve 
The dist. traveled along a curve from  
t = a to t = b is  

Note: 2D is same without the 𝑧’(𝑡).   
We derived this in Math 125. 
 
Example: Find the length of the curve 
𝒓(𝑡) = 〈cos(2𝑡), sin(2𝑡), 2 ln(cos(𝑡))〉 
from 𝑡 = 0 to 𝑡 =  𝜋/3. 
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If the curve is “traversed once” we call 
this distance the arc length. 
 
Example:  𝑥 = cos(𝑡) , 𝑦 = sin(𝑡) 

(a) Find the distance traveled by this 
object from 𝑡 = 0 to 𝑡 = 6𝜋. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Find the arc length of the path 
over which this object is traveling. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Arc Length Function 
The distance from a to t is called the  
arc length function  

𝑠(𝑡) =  ∫|�⃑� ′(𝑢)|𝑑𝑢 = distance

𝑡

𝑎

 

Note: 
𝑑𝑠

𝑑𝑡
= |�⃑� ′(𝑡)| = speed 

 

 
 

Example: x = 3 + 2t, y = 4 – 5t 
(a) Find the arc length function  

(from 0 to t). 
(b) Reparameterize in terms of s(t). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Unit Tangent & Principal Unit Normal 

�⃑⃑� (𝑡) =
�⃑� ′(𝑡)

|�⃑� ′(𝑡)|
= unit tangent       

�⃑⃑� (𝑡) =
�⃑⃑� ′(𝑡)

|�⃑⃑� ′(𝑡)|
= principal unit normal 

Example: 
�⃑� (𝑡) = < 2 sin(3𝑡) , 𝑡, 2 cos(3𝑡) > 

Find �⃑⃑� (𝜋) and �⃑⃑� (𝜋) 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Why does this work? 
𝑻 and 𝑻′ are always orthogonal. 

 

Proof:   
Since 𝑻 ∙ 𝑻 = |𝑻|2 = 1,  
we can differentiate both sides to 
get 
                  𝑻′ ∙ 𝑻 + 𝑻 ∙ 𝑻′ = 0. 
 
So 2𝑻 ∙ 𝑻′ = 0.  
 
Thus, 𝑻 ∙ 𝑻′ = 0. (QED) 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Some TNB-Frame Facts: 

 �⃑⃑� (𝑡) and �⃑⃑� (𝑡) point in the tangent 
and inward directions, respectively. 
Together they give a good 
approximation of the “plane of 
motion”. This “plane of motion” 
that goes through a point on the 

curve and is parallel to �⃑⃑� (𝑡) and 

�⃑⃑� (𝑡) is called the osculating 
(kissing) plane.   

 

 �⃑⃑� (𝑡), �⃑⃑� (𝑡), �⃑� ′(𝑡), and �⃑� ′′(𝑡) are ALL 
parallel to the osculating plane.  We 
also define 

       �⃑⃑� (𝑡) = �⃑⃑� (𝑡) × �⃑⃑� (𝑡) = binormal 
       which is orthogonal to all  

of �⃑⃑� (𝑡), �⃑⃑� (𝑡), �⃑� ′(𝑡), and �⃑� ′′(𝑡). 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



Curvature 
The curvature at a point, K, is a 
measure of how quickly a curve is 
changing direction at that point. 
 
That is, we define  

 K = 
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

 

 
 
 
 

Roughly, how much does your direction 
change if you move a small amount 
(“one inch”) along the curve? 

K ≈ |
𝑻𝟐⃑⃑⃑⃑  ⃑−𝑻𝟏⃑⃑⃑⃑  ⃑

"𝑜𝑛𝑒 𝑖𝑛𝑐ℎ"
| = |

∆�⃑⃑� 

∆𝑠
| 

 
So we define: 

𝐾 = |
𝑑�⃑⃑� 

𝑑𝑠
| 

 
 
 
 
 
 
 
 
 
 



Computation 

𝐾 = |
𝑑�⃑⃑� 

𝑑𝑠
| 

is not easy to compute directly, so we 
derive some shortcuts 
 
1st shortcut: 

𝐾(𝑡) =  |
𝑑�⃑⃑� 

𝑑𝑠
| = |

𝑑�⃑⃑� /𝑑𝑡

𝑑𝑠/𝑑𝑡
| =

|�⃑⃑� ′(𝑡)|

|�⃑� ′(𝑡)|
 

 
2nd shortcut 

𝐾(𝑡) =  |
𝑑�⃑⃑� 

𝑑𝑠
| =

|�⃑⃑� ′(𝑡)|

|�⃑� ′(𝑡)|
=

|�⃑� ′(𝑡) × �⃑� ′′(𝑡)|

|�⃑� ′(𝑡)|𝟑
 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example: Find the curvature function 
for 𝒓(𝑡) = 〈𝑡, cos(2𝑡) , sin (2𝑡)〉. 

 
Answer: 

𝒓′(𝑡) = 〈1, −2sin(2𝑡) , 2cos (2𝑡)〉 
𝒓′′(𝑡) = 〈0, −4cos(2𝑡) , 4sin (2𝑡)〉 

 
 

| 𝒓′(𝑡)| = √1 + 4 sin2(2𝑡) + 4 cos2(2𝑡) 

so | 𝒓′(𝑡)| = √5 

 
 
𝒓′(𝑡) × 𝒓′′(𝑡) = 〈−8,−4 sin(2𝑡) , −4 cos(2𝑡)〉 

So |𝒓′(𝑡) × 𝒓′′(𝑡)| = √64 + 16 = √80 
 

 

|�⃑� ′(𝑡) × �⃑� ′′(𝑡)|

|�⃑� ′(𝑡)|𝟑
=

√80

√5
3

= √
80

125
= 0.8 

This curve has constant curvature. 

 
 
 
 
 
 
 
 
 
Aside: The radius of curvature is the 
radius of the circle that would best fit 
this curve.  It is always 1/K.   
In this case it would be 1/0.8 = 1.25. 
 
In other words, moving along this 
curve is like moving around a circle of 
radius 1.25, that is another way to 
think of how “curvy” it is) 
 



Proof of shortcut: 
--------------------------------------------- 

Theorem: 
|𝑻′(𝑡)|

|𝒓′(𝑡)|
=

|𝒓′(𝑡)×𝒓′′(𝑡)|

|𝒓′(𝑡)|𝟑
 

 
Proof:   

Since 𝑻(𝑡) =  
𝒓′(𝑡)

|𝒓′(𝑡)|
, we have 

𝒓′(𝑡) = |𝒓′(𝑡)|𝑻(𝑡). 
 

Differentiating this gives (prod. rule): 
  𝒓′′(𝑡) = |𝒓′(𝑡)|′𝑻(𝑡) + |𝒓′(𝑡)|𝑻′(𝑡). 
 

Take cross-prod. of both sides with �⃑⃑� : 

 𝑻 × 𝒓′′ = |𝒓′|
′
 (𝑻 × 𝑻) + |𝒓′| (𝑻 × 𝑻′). 

 
 
 
 
 
 

 
 

Since 𝑻 × 𝑻 = < 0, 0, 0 > (why?)  

and 𝑻 =
𝒓′

|𝒓′|
, we have 

𝒓′ × 𝒓′′

|𝒓′|
= |𝒓′| (𝑻 × 𝑻′). 

 
Taking the magnitude gives (why?) 
|𝒓′×𝒓′′|

|𝒓′|
= |𝒓′| |𝑻 × 𝑻′| = |𝒓′| |𝑻||𝑻′|𝑠𝑖𝑛 (

𝝅

𝟐
),

   
Since |𝑻| = 1, we have 

|𝑻′| =
|𝒓′ × 𝒓′′|

|𝒓′|2
 

Therefore  

𝐾 = |
𝑑𝑻

𝑑𝑠
| =

|𝑻′(𝑡)|

|𝒓′(𝑡)|
=

|𝒓′ × 𝒓′′|

|𝒓′|𝟑
. 

 
-------------------------------------------------- 
 



Note: To find curvature for a 2D 
function, y = f(x),we can form a 3D 
vector function as follows 
                    𝒓(𝑥) =  〈𝑥, 𝑓(𝑥), 0〉  
 
so   𝒓′(𝑥) =  〈1, 𝑓′(𝑥), 0〉       and 
      𝒓′′(𝑥) =  〈0, 𝑓′′(𝑥), 0〉 

     |𝒓′(𝑥)| =  √1 + (𝑓′(𝑥))2   
    𝒓′ × 𝒓′′ = 〈0,0, 𝑓′′(𝑥)〉        
 
Thus, 

𝐾(𝑥) =  
|𝒓′ × 𝒓′′|

|𝒓′|𝟑
=

|𝑓′′(𝑥)|

(1 + (𝑓′(𝑥))
2
)
3/2

 

 

 
 
 
 
 

Example:  𝑓(𝑡) = 𝑥2 
At what point (𝑥, 𝑦, 𝑧) is the 
curvature maximum? 
 



Summary of 3D Curve Measurement Tools: 
 

Given  �⃑� (𝑡) = < 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) > 
 
�⃑� ′(𝑡) = a tangent vector 

𝑠(𝑡) = ∫ |�⃑� ′(𝑡)|𝑑𝑡
𝑡

0

 

𝐾 =  |
𝑑�⃑⃑� 

𝑑𝑠
| =

|�⃑� ′ × �⃑� ′′|

|�⃑� ′|𝟑
 

 

�⃑⃑� (𝑡) =
�⃑� ′(𝑡)

|�⃑� ′(𝑡)|
= unit tangent       

�⃑⃑� (𝑡) =
�⃑⃑� ′(𝑡)

|�⃑⃑� ′(𝑡)|
= principal unit normal 

 
 
 
 
 
 

 
 
 
 


